Nanoscience and Advanced Materials /rasei/ en The case of the vanishing seeds: How curiosity-driven research is future-proofing “Smart Windows” /rasei/2026/01/27/case-vanishing-seeds-how-curiosity-driven-research-future-proofing-smart-windows <span>The case of the vanishing seeds: How curiosity-driven research is future-proofing “Smart Windows”</span> <span><span>Daniel Morton</span></span> <span><time datetime="2026-01-27T10:02:14-07:00" title="Tuesday, January 27, 2026 - 10:02">Tue, 01/27/2026 - 10:02</time> </span> <div> <div class="imageMediaStyle focal_image_wide"> <img loading="lazy" src="/rasei/sites/default/files/styles/focal_image_wide/public/2026-01/2025_12_Windows_Thumbnail.png?h=6377f7ce&amp;itok=7RWgxY1I" width="1200" height="800" alt="Dynamic windows looking out over the flatiron mountains"> </div> </div> <div role="contentinfo" class="container ucb-article-categories" itemprop="about"> <span class="visually-hidden">Categories:</span> <div class="ucb-article-category-icon" aria-hidden="true"> <i class="fa-solid fa-folder-open"></i> </div> <a href="/rasei/taxonomy/term/177"> News </a> <a href="/rasei/taxonomy/term/170"> Publication Highlight </a> </div> <div role="contentinfo" class="container ucb-article-tags" itemprop="keywords"> <span class="visually-hidden">Tags:</span> <div class="ucb-article-tag-icon" aria-hidden="true"> <i class="fa-solid fa-tags"></i> </div> <a href="/rasei/taxonomy/term/285" hreflang="en">Buildings</a> <a href="/rasei/taxonomy/term/269" hreflang="en">Energy Applications</a> <a href="/rasei/taxonomy/term/67" hreflang="en">McGehee</a> <a href="/rasei/taxonomy/term/274" hreflang="en">Nanoscience and Advanced Materials</a> </div> <a href="/rasei/our-community">Daniel Morton</a> <div class="ucb-article-content ucb-striped-content"> <div class="container"> <div class="paragraph paragraph--type--article-content paragraph--view-mode--default"> <div class="ucb-article-text" itemprop="articleBody"> <div><div class="feature-layout-callout feature-layout-callout-large"><div class="ucb-callout-content"><div class="ucb-box ucb-box-title-left ucb-box-alignment-none ucb-box-style-fill ucb-box-theme-lightgray"><div class="ucb-box-inner"><div class="ucb-box-title">Find out more</div><div class="ucb-box-content"><p><a class="ucb-link-button ucb-link-button-blue ucb-link-button-full ucb-link-button-large" href="https://doi.org/10.1021/acsami.5c19998" rel="nofollow"><span class="ucb-link-button-contents">Read the Article</span></a></p></div></div></div></div></div><p class="hero">Have you ever walked into a room on a glorious Colorado summer day and felt the heat radiating through the glass?&nbsp;</p><p class="lead">We usually solve this by cranking up the air conditioning or closing the blinds, losing our mountain view in the process. But what if the window itself could think? A team led by <a href="/rasei/michael-mcgehees-rasei-engagement" rel="nofollow">Mike McGehee</a>, a Fellow at RASEI, describes research that improves the robustness of such a device.&nbsp;</p></div> </div> </div> </div> </div> <div class="ucb-article-content ucb-striped-content"> <div class="container"> <div class="paragraph paragraph--type--article-content paragraph--view-mode--default 3"> <div class="ucb-article-row-subrow row"> <div class="ucb-article-text col-lg d-flex align-items-center" itemprop="articleBody"> <div><p>For years researchers have been working on “smart windows”, devices that could “sense” the conditions outside and “react” to them. This investigation centers around a promising technology called Reversible Metal Electrodeposition (RME). The technical details of this process are complex, but you can understand the concept by thinking of it as a reversible coat of paint. At the flip of a switch, a thin layer of metal, in this case silver, spreads across the glass to form a layer that tints it, blocking out the heat and the glare. Flip the switch again and the silver dissolves back into a clear liquid, making the window transparent.&nbsp;</p><p>Buildings are responsible for consuming around 40% of all generated energy globally, much of which is expended in regulating the temperature, heating and cooling the building interior. Installing smart windows that can react to the environmental conditions could provide a very effective mechanism to reduce energy use and slash energy bills by automatically managing how much heat enters a room. It has been estimated that just by controlling the amount of sunlight that is let into a building through a window, we could cut energy bills by up to as much as 20%.</p></div> </div> <div class="ucb-article-content-media ucb-article-content-media-right col-lg"> <div> <div class="paragraph paragraph--type--media paragraph--view-mode--default"> <div> <div class="imageMediaStyle large_image_style"> <img loading="lazy" src="/rasei/sites/default/files/styles/large_image_style/public/2026-01/Windows-02.png?itok=BDw4urEg" width="1500" height="1000" alt="Figure showing the schematics of window transition"> </div> </div> </div> </div> </div> </div> </div> </div> </div> <div class="ucb-article-content ucb-striped-content"> <div class="container"> <div class="paragraph paragraph--type--article-content paragraph--view-mode--default"> <div class="ucb-article-text" itemprop="articleBody"> <div><p>However, there have been a number of challenges to overcome in order to take this initial discovery from the lab to a product that can be deployed for use in buildings. One challenge is that early versions of these windows started out fast but grew “lazy” over time. After a few thousand uses the tinting / de-tinting process slowed, taking almost four times longer than it did on day one.</p><p><span>This is where the researchers undertook some detailed investigations to identify what was going on, and what could be done to fix it. A collaboration between the McGehee group (at the ý) and the </span><a href="https://barile.epizy.com/index.php?i=1" rel="nofollow"><span>Barile Group</span></a><span> (at the University of Nevada) set out to find out exactly what was happening. The team decided to look closer, using a combination of high-powered x-rays and electrochemical tests. The windows were using tiny “seeds” of platinum to help the silver grow on the glass. Platinum is recognized for being tough and non-reactive, and so should be perfect as a nucleation point for the silver. Using these advanced techniques the team explored exactly what was happening to the platinum seeds during the clearing phase, when the silver “paint” is stripped away.&nbsp;</span></p></div> </div> </div> </div> </div> <div class="ucb-article-content ucb-striped-content"> <div class="container"> <div class="paragraph paragraph--type--article-content paragraph--view-mode--default 3"> <div class="ucb-article-row-subrow row"> <div class="ucb-article-text col-lg d-flex align-items-center" itemprop="articleBody"> <div><p>To their surprise, the platinum was not as tough as they initially thought. In the special liquid environment needed for the windows, the platinum seeds were actually dissolving and washing away when the window was switched to clear. As the number of seeds dropped, the silver had fewer locations to grow from, which was the cause behind the window tinting slowing.</p><p>This led the team to ask the question “What can we do to make the seeds more resilient?”, which led them to use gold in place of platinum. While gold and platinum are both precious metals, in water, which is the solvent used inside the window panels, gold is more stable and less susceptible to decomposition and dissolving. When they swapped the platinum seeds for gold ones, the results were immediate. Even after 7,500 cycles, the equivalent of years of daily use, the windows transitioned just as fast as the first time they were used.&nbsp;</p></div> </div> <div class="ucb-article-content-media ucb-article-content-media-right col-lg"> <div> <div class="paragraph paragraph--type--media paragraph--view-mode--default"> <div> <div class="imageMediaStyle large_image_style"> <img loading="lazy" src="/rasei/sites/default/files/styles/large_image_style/public/2026-01/Windows-01.png?itok=ZXThEYdT" width="1500" height="1000" alt="Chart that shows the performance of different versions of the dynamic windows"> </div> </div> </div> </div> </div> </div> </div> </div> </div> <div class="ucb-article-content ucb-striped-content"> <div class="container"> <div class="paragraph paragraph--type--article-content paragraph--view-mode--default"> <div class="ucb-article-text" itemprop="articleBody"> <div><p>These gold-based windows provide an exciting range of opportunities. Not only because of their improved stability over many thousands of cycles, but also because they can express multiple colors by varying the voltage, a feature of the size of the gold particles. This presents opportunities for their use in displays and communications devices. This technology offers a better, smarter window that could passively save significant amounts of energy if deployed in commercial and residential buildings. This work shows how the impact of making fundamental chemical changes can unlock the potential of new technologies.&nbsp;</p></div> </div> </div> </div> </div> <div>January 2026</div> <h2> <div class="paragraph paragraph--type--ucb-related-articles-block paragraph--view-mode--default"> <div>Off</div> </div> </h2> <div>Traditional</div> <div>0</div> <div> <div class="imageMediaStyle large_image_style"> <img loading="lazy" src="/rasei/sites/default/files/styles/large_image_style/public/2026-01/2025_12_Windows_Hero.png?itok=gBExJg6r" width="1500" height="322" alt="Images of dynamic windows looking out over the mountains above ý"> </div> </div> <div>On</div> <div>White</div> Tue, 27 Jan 2026 17:02:14 +0000 Daniel Morton 1518 at /rasei Influence of Ligand Exchange on Single Particle Properties of Cesium Lead Bromide Quantum Dots /rasei/2026/01/20/influence-ligand-exchange-single-particle-properties-cesium-lead-bromide-quantum-dots <span>Influence of Ligand Exchange on Single Particle Properties of Cesium Lead Bromide Quantum Dots</span> <span><span>Daniel Morton</span></span> <span><time datetime="2026-01-20T14:16:48-07:00" title="Tuesday, January 20, 2026 - 14:16">Tue, 01/20/2026 - 14:16</time> </span> <div> <div class="imageMediaStyle focal_image_wide"> <img loading="lazy" src="/rasei/sites/default/files/styles/focal_image_wide/public/2026-01/2026_01_20_ChemMat.png?h=6377f7ce&amp;itok=Q-mYNcCW" width="1200" height="800" alt="TOC Graphic"> </div> </div> <div role="contentinfo" class="container ucb-article-categories" itemprop="about"> <span class="visually-hidden">Categories:</span> <div class="ucb-article-category-icon" aria-hidden="true"> <i class="fa-solid fa-folder-open"></i> </div> <a href="/rasei/taxonomy/term/43"> Publication </a> </div> <div role="contentinfo" class="container ucb-article-tags" itemprop="keywords"> <span class="visually-hidden">Tags:</span> <div class="ucb-article-tag-icon" aria-hidden="true"> <i class="fa-solid fa-tags"></i> </div> <a href="/rasei/taxonomy/term/160" hreflang="en">Dukovic</a> <a href="/rasei/taxonomy/term/269" hreflang="en">Energy Applications</a> <a href="/rasei/taxonomy/term/304" hreflang="en">IMOD</a> <a href="/rasei/taxonomy/term/50" hreflang="en">Marder</a> <a href="/rasei/taxonomy/term/274" hreflang="en">Nanoscience and Advanced Materials</a> <a href="/rasei/taxonomy/term/290" hreflang="en">Semiconductors</a> <a href="/rasei/taxonomy/term/111" hreflang="en">Toney</a> <a href="/rasei/taxonomy/term/114" hreflang="en">Yazdi</a> </div> <div class="ucb-article-content ucb-striped-content"> <div class="container"> <div class="paragraph paragraph--type--article-content paragraph--view-mode--default"> <div class="ucb-article-text" itemprop="articleBody"> </div> </div> </div> </div> <div>CHEMISTRY OF MATERIALS, 2026, ASAP</div> <script> window.location.href = `https://doi.org/10.1021/acs.chemmater.5c02233`; </script> <h2> <div class="paragraph paragraph--type--ucb-related-articles-block paragraph--view-mode--default"> <div>Off</div> </div> </h2> <div>Traditional</div> <div>0</div> <div>On</div> <div>White</div> Tue, 20 Jan 2026 21:16:48 +0000 Daniel Morton 1501 at /rasei Nickel-oxide hole-transport layers prevent abrupt reverse-bias breakdown and permanent shorting of perovskite solar cells caused by pinhole defects /rasei/2026/01/12/nickel-oxide-hole-transport-layers-prevent-abrupt-reverse-bias-breakdown-and-permanent <span>Nickel-oxide hole-transport layers prevent abrupt reverse-bias breakdown and permanent shorting of perovskite solar cells caused by pinhole defects</span> <span><span>Daniel Morton</span></span> <span><time datetime="2026-01-12T17:25:38-07:00" title="Monday, January 12, 2026 - 17:25">Mon, 01/12/2026 - 17:25</time> </span> <div> <div class="imageMediaStyle focal_image_wide"> <img loading="lazy" src="/rasei/sites/default/files/styles/focal_image_wide/public/2026-01/2026_01_12_EES_Solar.png?h=6377f7ce&amp;itok=I3AktCjb" width="1200" height="800" alt="TOC graphic"> </div> </div> <div role="contentinfo" class="container ucb-article-categories" itemprop="about"> <span class="visually-hidden">Categories:</span> <div class="ucb-article-category-icon" aria-hidden="true"> <i class="fa-solid fa-folder-open"></i> </div> <a href="/rasei/taxonomy/term/43"> Publication </a> </div> <div role="contentinfo" class="container ucb-article-tags" itemprop="keywords"> <span class="visually-hidden">Tags:</span> <div class="ucb-article-tag-icon" aria-hidden="true"> <i class="fa-solid fa-tags"></i> </div> <a href="/rasei/taxonomy/term/266" hreflang="en">Energy Generation</a> <a href="/rasei/taxonomy/term/67" hreflang="en">McGehee</a> <a href="/rasei/taxonomy/term/274" hreflang="en">Nanoscience and Advanced Materials</a> <a href="/rasei/taxonomy/term/287" hreflang="en">Perovskites</a> <a href="/rasei/taxonomy/term/273" hreflang="en">Solar Power</a> </div> <div class="ucb-article-content ucb-striped-content"> <div class="container"> <div class="paragraph paragraph--type--article-content paragraph--view-mode--default"> <div class="ucb-article-text" itemprop="articleBody"> </div> </div> </div> </div> <div>EES SOLAR, 2026, ASAP</div> <script> window.location.href = `https://doi.org/10.1039/D5EL00206K`; </script> <h2> <div class="paragraph paragraph--type--ucb-related-articles-block paragraph--view-mode--default"> <div>Off</div> </div> </h2> <div>Traditional</div> <div>0</div> <div>On</div> <div>White</div> Tue, 13 Jan 2026 00:25:38 +0000 Daniel Morton 1488 at /rasei Polariton Control of Molecular Charge Transfer in Perylene Diimide Semiconductors /rasei/2026/01/07/polariton-control-molecular-charge-transfer-perylene-diimide-semiconductors <span>Polariton Control of Molecular Charge Transfer in Perylene Diimide Semiconductors</span> <span><span>Daniel Morton</span></span> <span><time datetime="2026-01-07T17:22:26-07:00" title="Wednesday, January 7, 2026 - 17:22">Wed, 01/07/2026 - 17:22</time> </span> <div> <div class="imageMediaStyle focal_image_wide"> <img loading="lazy" src="/rasei/sites/default/files/styles/focal_image_wide/public/2026-01/2026_01_07_JPhysChemLett.png?h=6377f7ce&amp;itok=HInNvr-5" width="1200" height="800" alt="TOC graphic"> </div> </div> <div role="contentinfo" class="container ucb-article-categories" itemprop="about"> <span class="visually-hidden">Categories:</span> <div class="ucb-article-category-icon" aria-hidden="true"> <i class="fa-solid fa-folder-open"></i> </div> <a href="/rasei/taxonomy/term/43"> Publication </a> </div> <div role="contentinfo" class="container ucb-article-tags" itemprop="keywords"> <span class="visually-hidden">Tags:</span> <div class="ucb-article-tag-icon" aria-hidden="true"> <i class="fa-solid fa-tags"></i> </div> <a href="/rasei/taxonomy/term/269" hreflang="en">Energy Applications</a> <a href="/rasei/taxonomy/term/80" hreflang="en">Johnson</a> <a href="/rasei/taxonomy/term/274" hreflang="en">Nanoscience and Advanced Materials</a> <a href="/rasei/taxonomy/term/290" hreflang="en">Semiconductors</a> <a href="/rasei/taxonomy/term/79" hreflang="en">Smalyukh</a> </div> <div class="ucb-article-content ucb-striped-content"> <div class="container"> <div class="paragraph paragraph--type--article-content paragraph--view-mode--default"> <div class="ucb-article-text" itemprop="articleBody"> </div> </div> </div> </div> <div>THE JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2026, ASAP</div> <script> window.location.href = `https://doi.org/10.1021/acs.jpclett.5c02566`; </script> <h2> <div class="paragraph paragraph--type--ucb-related-articles-block paragraph--view-mode--default"> <div>Off</div> </div> </h2> <div>Traditional</div> <div>0</div> <div>On</div> <div>White</div> Thu, 08 Jan 2026 00:22:26 +0000 Daniel Morton 1487 at /rasei Photophysical Properties and Phase Behavior of Ultrawide Photovoltaic Bandgap Cesium–Lead-Based Triple Halide Perovskites /rasei/2026/01/05/photophysical-properties-and-phase-behavior-ultrawide-photovoltaic-bandgap-cesium-lead <span>Photophysical Properties and Phase Behavior of Ultrawide Photovoltaic Bandgap Cesium–Lead-Based Triple Halide Perovskites</span> <span><span>Daniel Morton</span></span> <span><time datetime="2026-01-05T17:19:00-07:00" title="Monday, January 5, 2026 - 17:19">Mon, 01/05/2026 - 17:19</time> </span> <div> <div class="imageMediaStyle focal_image_wide"> <img loading="lazy" src="/rasei/sites/default/files/styles/focal_image_wide/public/2026-01/2026_01_05_ChemMat.png?h=6377f7ce&amp;itok=rgpUhref" width="1200" height="800" alt="TOC graphic"> </div> </div> <div role="contentinfo" class="container ucb-article-categories" itemprop="about"> <span class="visually-hidden">Categories:</span> <div class="ucb-article-category-icon" aria-hidden="true"> <i class="fa-solid fa-folder-open"></i> </div> <a href="/rasei/taxonomy/term/43"> Publication </a> </div> <div role="contentinfo" class="container ucb-article-tags" itemprop="keywords"> <span class="visually-hidden">Tags:</span> <div class="ucb-article-tag-icon" aria-hidden="true"> <i class="fa-solid fa-tags"></i> </div> <a href="/rasei/taxonomy/term/266" hreflang="en">Energy Generation</a> <a href="/rasei/taxonomy/term/67" hreflang="en">McGehee</a> <a href="/rasei/taxonomy/term/274" hreflang="en">Nanoscience and Advanced Materials</a> <a href="/rasei/taxonomy/term/287" hreflang="en">Perovskites</a> <a href="/rasei/taxonomy/term/273" hreflang="en">Solar Power</a> <a href="/rasei/taxonomy/term/305" hreflang="en">TEAMUP</a> </div> <div class="ucb-article-content ucb-striped-content"> <div class="container"> <div class="paragraph paragraph--type--article-content paragraph--view-mode--default"> <div class="ucb-article-text" itemprop="articleBody"> </div> </div> </div> </div> <div>CHEMISTRY OF MATERIALS, 2026, ASAP</div> <script> window.location.href = `https://doi.org/10.1021/acs.chemmater.5c02577`; </script> <h2> <div class="paragraph paragraph--type--ucb-related-articles-block paragraph--view-mode--default"> <div>Off</div> </div> </h2> <div>Traditional</div> <div>0</div> <div>On</div> <div>White</div> Tue, 06 Jan 2026 00:19:00 +0000 Daniel Morton 1486 at /rasei Locking in Solar Power: How a Stronger Interlayer Boosts Perovskite Cell Durability /rasei/2026/01/05/locking-solar-power-how-stronger-interlayer-boosts-perovskite-cell-durability <span>Locking in Solar Power: How a Stronger Interlayer Boosts Perovskite Cell Durability</span> <span><span>Daniel Morton</span></span> <span><time datetime="2026-01-05T12:31:00-07:00" title="Monday, January 5, 2026 - 12:31">Mon, 01/05/2026 - 12:31</time> </span> <div> <div class="imageMediaStyle focal_image_wide"> <img loading="lazy" src="/rasei/sites/default/files/styles/focal_image_wide/public/2026-01/2026_01_Marder_Science_Thumbnail.png?h=6377f7ce&amp;itok=gKUipwt7" width="1200" height="800" alt="Illustration of a phosphonic acid reacting with a perovskite"> </div> </div> <div role="contentinfo" class="container ucb-article-categories" itemprop="about"> <span class="visually-hidden">Categories:</span> <div class="ucb-article-category-icon" aria-hidden="true"> <i class="fa-solid fa-folder-open"></i> </div> <a href="/rasei/taxonomy/term/177"> News </a> <a href="/rasei/taxonomy/term/170"> Publication Highlight </a> </div> <div role="contentinfo" class="container ucb-article-tags" itemprop="keywords"> <span class="visually-hidden">Tags:</span> <div class="ucb-article-tag-icon" aria-hidden="true"> <i class="fa-solid fa-tags"></i> </div> <a href="/rasei/taxonomy/term/51" hreflang="en">Barlow</a> <a href="/rasei/taxonomy/term/266" hreflang="en">Energy Generation</a> <a href="/rasei/taxonomy/term/50" hreflang="en">Marder</a> <a href="/rasei/taxonomy/term/274" hreflang="en">Nanoscience and Advanced Materials</a> <a href="/rasei/taxonomy/term/287" hreflang="en">Perovskites</a> <a href="/rasei/taxonomy/term/273" hreflang="en">Solar Power</a> </div> <div class="ucb-article-content ucb-striped-content"> <div class="container"> <div class="paragraph paragraph--type--article-content paragraph--view-mode--default"> <div class="ucb-article-text" itemprop="articleBody"> <div><p class="lead">New Molecular Designs Extend the Life and Efficiency of Next-Generation Solar Cells</p><div class="feature-layout-callout feature-layout-callout-large"><div class="ucb-callout-content"><div class="ucb-box ucb-box-title-left ucb-box-alignment-none ucb-box-style-fill ucb-box-theme-lightgray"><div class="ucb-box-inner"><div class="ucb-box-title">Find out more</div><div class="ucb-box-content"><p><a class="ucb-link-button ucb-link-button-blue ucb-link-button-full ucb-link-button-large" href="https://doi.org/10.1126/science.adz7969" rel="nofollow"><span class="ucb-link-button-contents">Read the Article</span></a></p></div></div></div></div></div><p>Posted on the RASEI website with permission and minor modifications from the piece published by David DeFusco on the <a href="https://aps.unc.edu/home-page-news-item/study-reveals-tiny-chemical-fix-dramatically-extends-the-life-of-next-generation-solar-cells/" data-entity-type="external" rel="nofollow">UNC Chapel Hill Applied Physical Sciences Site here</a>.&nbsp;</p><p>&nbsp;</p></div> </div> </div> </div> </div> <div class="ucb-article-content ucb-striped-content"> <div class="container"> <div class="paragraph paragraph--type--article-content paragraph--view-mode--default"> <div class="ucb-article-text" itemprop="articleBody"> <div><p><span>A new study published in&nbsp;</span><em><span>Science</span></em><span> led by researchers at UNC-Chapel Hill, with collaborators from the Renewable and Sustainable Energy Institute (RASEI), explains why perovskite solar cells—fast-rising rivals to traditional silicon panels—tend to break down under prolonged heat and sunlight, especially ultraviolet light, and reveals a promising strategy to dramatically slow that damage.</span></p><p><span>The work focuses on a thin “interlayer” that sits between the electrode and the perovskite material inside a solar cell. This layer is only a single molecule thick, but it plays an outsized role in how long the device lasts.</span></p><p><span>“These interlayers are meant to help charges move efficiently out of the perovskite and into the circuit,” said Chengbin Fei, first author of the study and a postdoctoral researcher in UNC’s Department of Applied Physical Sciences. “But we found that some of the same chemical features that make them useful can also cause long-term damage if they’re not tightly attached to the electrode.”</span></p><p><span>Many high-performance perovskite solar cells use interlayers based on phosphonic acids. These molecules stick to a transparent electrode made of indium tin oxide, or ITO, and help pull positive charges out of the perovskite. Until now, most researchers assumed these layers were harmless once installed. Fei and his colleagues discovered that this is not always true.</span></p><p><span>The researchers found that some of these tiny helper molecules aren’t firmly stuck to the solar cell’s surface. When the cell gets hot or sits in sunlight that includes ultraviolet rays, those that are loosely attached molecules can break free. Once that happens, they start interfering with the solar material itself. They trigger harmful changes inside the cell: key ingredients fall apart, iodine-related components react in damaging ways and lead turns into a form that no longer works properly. Over time, all of this damage adds up and causes the solar cell to produce less and less electricity.</span></p><p><span>“In simple terms, the acid part of these molecules can act like a slow poison,” said Fei. “At high temperatures and under UV light, it accelerates chemical reactions that the perovskite just can’t tolerate.”</span></p><p><span>To understand what was happening, the researchers used a range of techniques, including spectroscopy and X-ray measurements, to watch how the materials changed over time. They found that stronger acids caused faster damage and that UV light made the reactions much worse. This explained why devices that look stable at first can fail after hundreds or thousands of hours outdoors.</span></p></div> </div> </div> </div> </div> <div class="ucb-article-content ucb-striped-content"> <div class="container"> <div class="paragraph paragraph--type--article-content paragraph--view-mode--default 3"> <div class="ucb-article-row-subrow row"> <div class="ucb-article-text col-lg d-flex align-items-center" itemprop="articleBody"> <div><p><span>The key advance came when the researchers at UNC and the ý created a new version of this thin helper layer containing a combination of two molecules that sticks much more tightly to the electrode surface. Seth Marder, the senior author at the University of Colorado-ý and Director of the </span><a href="/rasei/" rel="nofollow"><span>Renewable and Sustainable Energy Institute (RASEI)</span></a><span> says “the molecule our team developed was designed to not only interact with the electrode surface but more strongly with its neighboring molecules. Consequently the molecules stay more securely in place, reducing the reactive parts that can break away and damage the solar material that is deposited on top ”. As a result, the layer still helps charges flow out of the cell, but it no longer triggers the damaging reactions that shorten the cell’s lifetime.</span></p><p><span>Simply put, “when the molecule is firmly locked onto the surface, it can’t wander into the perovskite and cause trouble,” said Fei. “That simple change makes a huge difference over time.”</span></p><p><span>Solar cells made with the new interlayer design showed striking improvements and met a key performance milestone. Under harsh test conditions—85 degrees Celsius, continuous bright light that included UV and constant operation—the devices ran for nearly 3,000 hours before losing just 10 percent of their efficiency. That level of durability has not been reported before for this type of perovskite solar cell.</span></p></div> </div> <div class="ucb-article-content-media ucb-article-content-media-right col-lg"> <div> <blockquote class="ucb-article-blockquote"> <div class="ucb-article-blockquote-icon font-gold"> <i class="fa-solid fa-quote-left"></i> </div> <div class="ucb-article-blockquote-text"> <div>The molecule our team developed was designed to not only interact with the electrode surface but more strongly with its neighboring molecules. Consequently the molecules stay more securely in place, reducing the reactive parts that can break away and damage the solar material that is deposited on top. <br> - Seth Marder</div> </div></blockquote> </div> </div> </div> </div> </div> </div> <div class="ucb-article-content ucb-striped-content"> <div class="container"> <div class="paragraph paragraph--type--article-content paragraph--view-mode--default"> <div class="ucb-article-text" itemprop="articleBody"> <div><p><span>The researchers also scaled up their approach to small solar modules, closer to what might be used in real products. These “minimodules,” about the size of a postcard, reached power conversion efficiencies above 22 percent and kept working for more than 2,000 hours under the same stressful conditions, which is considered very high performance for this type of solar technology.</span></p><p><span>Jinsong Huang, senior author of the paper and UNC Louis D. Rubin Distinguished Professor, said the results address one of the most important barriers to commercialization. “Efficiency alone is not enough,” he said. “For perovskite solar technology to succeed outside the lab, it must survive heat, light and time. This work shows a clear chemical pathway to make that happen.”</span></p><p><span>Beyond improving one specific material, the study sends a broader message to the field. Tiny details at buried interfaces—places that are hard to see and easy to overlook—can control the lifetime of an entire solar module. By understanding and managing these details, researchers can design devices that last far longer.</span></p><p><span>“This study reminds us that stability is a chemistry problem as much as an engineering one,” said Wei You, a co-author of the study and UNC Cary C. Boshamer Distinguished Professor of Chemistry and Applied Physical Sciences. “Once you understand the chemistry, you can start to fix it.”</span></p></div> </div> </div> </div> </div> <div>January 2026</div> <h2> <div class="paragraph paragraph--type--ucb-related-articles-block paragraph--view-mode--default"> <div>Off</div> </div> </h2> <div>Traditional</div> <div>0</div> <div> <div class="imageMediaStyle large_image_style"> <img loading="lazy" src="/rasei/sites/default/files/styles/large_image_style/public/2026-01/2026_01_Marder_Science_Hero.png?itok=lL771p1G" width="1500" height="322" alt="Illustration of a phosphonic acid reacting with a perovskite"> </div> </div> <div>On</div> <div>White</div> Mon, 05 Jan 2026 19:31:00 +0000 Daniel Morton 1469 at /rasei Limiting phosphonic acid interlayer–perovskite reactivity to stabilize perovskite solar modules /rasei/2026/01/01/limiting-phosphonic-acid-interlayer-perovskite-reactivity-stabilize-perovskite-solar <span>Limiting phosphonic acid interlayer–perovskite reactivity to stabilize perovskite solar modules</span> <span><span>Daniel Morton</span></span> <span><time datetime="2026-01-01T17:02:56-07:00" title="Thursday, January 1, 2026 - 17:02">Thu, 01/01/2026 - 17:02</time> </span> <div> <div class="imageMediaStyle focal_image_wide"> <img loading="lazy" src="/rasei/sites/default/files/styles/focal_image_wide/public/2026-01/2026_01_01_Science.png?h=6377f7ce&amp;itok=VGs5IehJ" width="1200" height="800" alt="TOC graphic"> </div> </div> <div role="contentinfo" class="container ucb-article-categories" itemprop="about"> <span class="visually-hidden">Categories:</span> <div class="ucb-article-category-icon" aria-hidden="true"> <i class="fa-solid fa-folder-open"></i> </div> <a href="/rasei/taxonomy/term/43"> Publication </a> </div> <div role="contentinfo" class="container ucb-article-tags" itemprop="keywords"> <span class="visually-hidden">Tags:</span> <div class="ucb-article-tag-icon" aria-hidden="true"> <i class="fa-solid fa-tags"></i> </div> <a href="/rasei/taxonomy/term/51" hreflang="en">Barlow</a> <a href="/rasei/taxonomy/term/266" hreflang="en">Energy Generation</a> <a href="/rasei/taxonomy/term/50" hreflang="en">Marder</a> <a href="/rasei/taxonomy/term/274" hreflang="en">Nanoscience and Advanced Materials</a> <a href="/rasei/taxonomy/term/287" hreflang="en">Perovskites</a> <a href="/rasei/taxonomy/term/290" hreflang="en">Semiconductors</a> </div> <div class="ucb-article-content ucb-striped-content"> <div class="container"> <div class="paragraph paragraph--type--article-content paragraph--view-mode--default"> <div class="ucb-article-text" itemprop="articleBody"> </div> </div> </div> </div> <div>SCIENCE, 2026, 391, 6780, eadz7969</div> <script> window.location.href = `https://doi.org/10.1126/science.adz7969`; </script> <h2> <div class="paragraph paragraph--type--ucb-related-articles-block paragraph--view-mode--default"> <div>Off</div> </div> </h2> <div>Traditional</div> <div>0</div> <div>On</div> <div>White</div> Fri, 02 Jan 2026 00:02:56 +0000 Daniel Morton 1481 at /rasei Platinum–Ruthenium Alloys Are Not Bifunctional CO Electro-Oxidation Catalysts: A Kinetic Analysis /rasei/2025/12/23/platinum-ruthenium-alloys-are-not-bifunctional-co-electro-oxidation-catalysts-kinetic <span>Platinum–Ruthenium Alloys Are Not Bifunctional CO Electro-Oxidation Catalysts: A Kinetic Analysis</span> <span><span>Daniel Morton</span></span> <span><time datetime="2025-12-23T17:10:35-07:00" title="Tuesday, December 23, 2025 - 17:10">Tue, 12/23/2025 - 17:10</time> </span> <div> <div class="imageMediaStyle focal_image_wide"> <img loading="lazy" src="/rasei/sites/default/files/styles/focal_image_wide/public/2026-01/2025_12_23_ACS_EnergLett.png?h=6377f7ce&amp;itok=Sm4HzkPr" width="1200" height="800" alt="TOC graphic"> </div> </div> <div role="contentinfo" class="container ucb-article-categories" itemprop="about"> <span class="visually-hidden">Categories:</span> <div class="ucb-article-category-icon" aria-hidden="true"> <i class="fa-solid fa-folder-open"></i> </div> <a href="/rasei/taxonomy/term/43"> Publication </a> </div> <div role="contentinfo" class="container ucb-article-tags" itemprop="keywords"> <span class="visually-hidden">Tags:</span> <div class="ucb-article-tag-icon" aria-hidden="true"> <i class="fa-solid fa-tags"></i> </div> <a href="/rasei/taxonomy/term/281" hreflang="en">Catalysis</a> <a href="/rasei/taxonomy/term/269" hreflang="en">Energy Applications</a> <a href="/rasei/taxonomy/term/132" hreflang="en">Holewinski</a> <a href="/rasei/taxonomy/term/274" hreflang="en">Nanoscience and Advanced Materials</a> </div> <div class="ucb-article-content ucb-striped-content"> <div class="container"> <div class="paragraph paragraph--type--article-content paragraph--view-mode--default"> <div class="ucb-article-text" itemprop="articleBody"> </div> </div> </div> </div> <div>ACS ENERGY LETTERS, 2025, 11, 1, 664-672</div> <script> window.location.href = `https://doi.org/10.1021/acsenergylett.5c03371`; </script> <h2> <div class="paragraph paragraph--type--ucb-related-articles-block paragraph--view-mode--default"> <div>Off</div> </div> </h2> <div>Traditional</div> <div>0</div> <div>On</div> <div>White</div> Wed, 24 Dec 2025 00:10:35 +0000 Daniel Morton 1483 at /rasei Assessing the Long-Term Stability of Anion Exchange Membranes for Electrochemical CO2 Reduction /rasei/2025/12/23/assessing-long-term-stability-anion-exchange-membranes-electrochemical-co2-reduction <span>Assessing the Long-Term Stability of Anion Exchange Membranes for Electrochemical CO2 Reduction</span> <span><span>Daniel Morton</span></span> <span><time datetime="2025-12-23T17:06:34-07:00" title="Tuesday, December 23, 2025 - 17:06">Tue, 12/23/2025 - 17:06</time> </span> <div> <div class="imageMediaStyle focal_image_wide"> <img loading="lazy" src="/rasei/sites/default/files/styles/focal_image_wide/public/2026-01/2025_12_23_ACS_AppEnergMat.png?h=6377f7ce&amp;itok=02ZN7tDs" width="1200" height="800" alt="TOC graphic"> </div> </div> <div role="contentinfo" class="container ucb-article-categories" itemprop="about"> <span class="visually-hidden">Categories:</span> <div class="ucb-article-category-icon" aria-hidden="true"> <i class="fa-solid fa-folder-open"></i> </div> <a href="/rasei/taxonomy/term/43"> Publication </a> </div> <div role="contentinfo" class="container ucb-article-tags" itemprop="keywords"> <span class="visually-hidden">Tags:</span> <div class="ucb-article-tag-icon" aria-hidden="true"> <i class="fa-solid fa-tags"></i> </div> <a href="/rasei/taxonomy/term/288" hreflang="en">Carbon Capture</a> <a href="/rasei/taxonomy/term/281" hreflang="en">Catalysis</a> <a href="/rasei/taxonomy/term/269" hreflang="en">Energy Applications</a> <a href="/rasei/taxonomy/term/274" hreflang="en">Nanoscience and Advanced Materials</a> <a href="/rasei/taxonomy/term/116" hreflang="en">Smith</a> </div> <div class="ucb-article-content ucb-striped-content"> <div class="container"> <div class="paragraph paragraph--type--article-content paragraph--view-mode--default"> <div class="ucb-article-text" itemprop="articleBody"> </div> </div> </div> </div> <div>ACS APPLIED ENERGY MATERIALS, 2025, 9, 1, 359-371<br> </div> <script> window.location.href = `https://doi.org/10.1021/acsaem.5c03109`; </script> <h2> <div class="paragraph paragraph--type--ucb-related-articles-block paragraph--view-mode--default"> <div>Off</div> </div> </h2> <div>Traditional</div> <div>0</div> <div>On</div> <div>White</div> Wed, 24 Dec 2025 00:06:34 +0000 Daniel Morton 1482 at /rasei Fusion and fission of particle-like chiral nematic vortex knots /rasei/2025/12/15/fusion-and-fission-particle-chiral-nematic-vortex-knots <span>Fusion and fission of particle-like chiral nematic vortex knots</span> <span><span>Daniel Morton</span></span> <span><time datetime="2025-12-15T11:53:44-07:00" title="Monday, December 15, 2025 - 11:53">Mon, 12/15/2025 - 11:53</time> </span> <div> <div class="imageMediaStyle focal_image_wide"> <img loading="lazy" src="/rasei/sites/default/files/styles/focal_image_wide/public/2026-01/2025_12_15_NatPhys.png?h=6377f7ce&amp;itok=yQcDbWk9" width="1200" height="800" alt="TOC graphic"> </div> </div> <div role="contentinfo" class="container ucb-article-categories" itemprop="about"> <span class="visually-hidden">Categories:</span> <div class="ucb-article-category-icon" aria-hidden="true"> <i class="fa-solid fa-folder-open"></i> </div> <a href="/rasei/taxonomy/term/43"> Publication </a> </div> <div role="contentinfo" class="container ucb-article-tags" itemprop="keywords"> <span class="visually-hidden">Tags:</span> <div class="ucb-article-tag-icon" aria-hidden="true"> <i class="fa-solid fa-tags"></i> </div> <a href="/rasei/taxonomy/term/269" hreflang="en">Energy Applications</a> <a href="/rasei/taxonomy/term/274" hreflang="en">Nanoscience and Advanced Materials</a> <a href="/rasei/taxonomy/term/290" hreflang="en">Semiconductors</a> <a href="/rasei/taxonomy/term/79" hreflang="en">Smalyukh</a> </div> <div class="ucb-article-content ucb-striped-content"> <div class="container"> <div class="paragraph paragraph--type--article-content paragraph--view-mode--default"> <div class="ucb-article-text" itemprop="articleBody"> </div> </div> </div> </div> <div>NATURE PHYSICS, 2025</div> <script> window.location.href = `https://doi.org/10.1038/s41567-025-03107-0`; </script> <h2> <div class="paragraph paragraph--type--ucb-related-articles-block paragraph--view-mode--default"> <div>Off</div> </div> </h2> <div>Traditional</div> <div>0</div> <div>On</div> <div>White</div> Mon, 15 Dec 2025 18:53:44 +0000 Daniel Morton 1478 at /rasei